login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(5^n).
9

%I #38 Feb 29 2024 01:51:24

%S 1,5,75025,59425114757512643212875125,

%T 18526362353047317310282957646406309593963452838196423660508102562977229905562196608078556292556795045922591488273554788881298750625

%N a(n) = Fibonacci(5^n).

%H Seiichi Manyama, <a href="/A145232/b145232.txt">Table of n, a(n) for n = 0..5</a>

%H Robert Frontczak, <a href="https://www.fq.math.ca/Problems/FQElemProbFeb2024.pdf">Problem B-1341</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 1 (2024), p. 84.

%H Thomas Koshy and Zhenguang Gao, <a href="https://www.fq.math.ca/Papers1/55-1/KoshyGao10272016.pdf">Polynomial Extensions of a Diminnie Delight</a>, Fibonacci Quart. 55 (2017), no. 1, 13-20.

%H Achilleas Sinefakopoulos, <a href="https://smc.math.ca/wp-content/uploads/crux-pdfs/Crux_v20n10_Dec.pdf">Solution to Problem 1909</a>, Crux Mathematicorum, 20 (1994), 295-296.

%F a(n) = (G^(5^n) - (1 - G)^(5^n))/sqrt(5) where G = (1 + sqrt(5))/2.

%F a(n) = (2/sqrt(5))*cosh((2*k+1)^n*arccosh(sqrt(5)/2)).

%F a(n) = (2/sqrt(5))*cosh(5^n*arccosh(sqrt(5)/2)).

%F a(n) = (5^n)*A128935(n). - _R. J. Mathar_, Nov 04 2010

%F a(n) = A000045(A000351(n)). - _Michel Marcus_, Nov 07 2013

%F a(n+1) = 25*a(n)^5 - 25*a(n)^3 + 5*a(n) with a(0) = 1. - _Peter Bala_, Nov 24 2022

%F a(n) = 5^n * Product_{k=0..n-1} (5*a(k)^4 - 5*a(k)^2 + 1) (Frontczak, 2024). - _Amiram Eldar_, Feb 29 2024

%p a := proc(n) option remember; if n = 0 then 1 else 25*a(n-1)^5 - 25*a(n-1)^3 + 5*a(n-1) end if; end:

%p seq(a(n), n = 0..5); # _Peter Bala_, Nov 24 2022

%t G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 6}]

%t Table[Round[N[(2/Sqrt[5])*Cosh[5^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]

%t Fibonacci[5^Range[0,4]] (* _Harvey P. Dale_, Nov 29 2018 *)

%Y Cf. A000045.

%Y Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), this sequence (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

%K nonn,easy

%O 0,2

%A _Artur Jasinski_, Oct 05 2008