login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145228
Scalar product of Atkin polynomial A_n(j) with itself.
0
1, 393120, 69837768000, 12823035496951680, 2373736216018210243200, 440845278818001523478812800, 82005900318446998074736259577600, 15268862972256859647625489731573696000, 2844591309372269068312979404560741985117440, 530152412660802854746312319621380805036392771200
OFFSET
0,2
LINKS
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
FORMULA
For formula see Maple code.
From Vaclav Kotesovec, Apr 07 2018: (Start)
For n > 0, a(n) = 2^(8*n) * 3^(6*n) * (12*n - 7) * Gamma(2*n - 7/6) * Gamma(2*n + 7/6) / (Pi * Gamma(2*n) * Gamma(2*n + 1)).
a(n) ~ 2^(8*n + 1) * 3^(6*n + 1) / Pi. (End)
MAPLE
af:=proc(a, n) mul(a+i, i=0..n-1); end; Aip:=n->(-12)^(6*n+1)*af(-1/12, n)*af(5/12, n)*af(7/12, n)*af(13/12, n)/((2*n-1)!*(2*n)!);
MATHEMATICA
Flatten[{1, Table[FullSimplify[2^(8*n) * 3^(6*n) * (12*n - 7) * Gamma[2*n - 7/6] * Gamma[2*n + 7/6] / (Pi * Gamma[2*n] * Gamma[2*n + 1])], {n, 1, 15}]}] (* Vaclav Kotesovec, Apr 07 2018 *)
CROSSREFS
Sequence in context: A345638 A346351 A157623 * A204628 A171439 A210162
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 28 2009
STATUS
approved