login
A144759
Primes the squares of which are Fibbinary numbers (A003714).
1
2, 3, 13, 17, 23, 47, 137, 257, 521, 577, 727, 739, 1033, 1153, 1181, 1471, 2081, 2113, 3251, 4129, 4253, 8209, 8329, 8353, 11597, 11677, 11779, 11971, 12503, 16417, 17053, 18433, 18583, 24799, 26317, 32801, 32833, 35267, 35393, 46703, 52177, 65537, 66569, 74257, 92801, 98327
OFFSET
1,1
LINKS
EXAMPLE
a(1)=2 since 2^2 is in A003714.
MAPLE
fibbin:= proc(n) Bits:-Xor(n, 2*n) = 3*n end proc:
select(t -> isprime(t) and fibbin(t^2), [2, seq(i, i=3..10^5, 2)]); # Robert Israel, Feb 15 2016
PROG
(PARI) msb(n)=my(k=1); while(k<=n, k<<=1); k>>1;
lista(nn) = {forprime(p=1, nn, n=p^2; k=bitand(n, n<<1); if(k, n=bitor(n, msb(k)-1), print1(p, ", ")); ); } \\ Michel Marcus, Feb 15 2016
CROSSREFS
Sequence in context: A215322 A040126 A215382 * A215359 A115898 A215350
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Sep 20 2008
EXTENSIONS
More terms from Michel Marcus, Feb 15 2016
STATUS
approved