login
Primes p such that p, p+4, p+10, p+22, p+24, p+42 are all primes.
1

%I #12 Oct 02 2021 18:05:36

%S 19,37,499,1009,1279,1429,2689,5077,13687,16879,17467,23017,25579,

%T 32299,33577,41179,48757,85597,92377,120997,125617,128389,143239,

%U 152419,159769,324427,327469,351037,352399,422857,473719,499669,518737,519349

%N Primes p such that p, p+4, p+10, p+22, p+24, p+42 are all primes.

%C Subsequence of A046136. - _R. J. Mathar_, Jan 14 2009

%H Harvey P. Dale, <a href="/A144594/b144594.txt">Table of n, a(n) for n = 1..1000</a>

%p isA046136 := proc(n) if isprime(n) and isprime(n+4) and isprime(n+10) then true; else false; fi; end: isA144594 := proc(n) if isA046136(n) and isprime(n+22) and isprime(n+24) and isprime(n+42) then true; else false; fi; end: for n from 2 to 1000000 do if isA144594(n) then printf("%d,",n) ; fi; od: # _R. J. Mathar_, Jan 14 2009

%t lst={}; Do[p=Prime[n]; If[PrimeQ[p+4]&&PrimeQ[p+10]&&PrimeQ[p+22]&&PrimeQ[p+24]&&PrimeQ[p+42],AppendTo[lst,p]],{n,3*8!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 15 2009 *)

%t Select[Prime[Range[44000]],AllTrue[#+{4,10,22,24,42},PrimeQ]&] (* _Harvey P. Dale_, Oct 02 2021 *)

%K nonn

%O 1,1

%A Philip Mole (molep(AT)comcen.com.au), Jan 13 2009

%E Definition corrected by _N. J. A. Sloane_, Jan 13 2009

%E Inserted missing values _R. J. Mathar_, Jan 14 2009

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Jan 15 2009