OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..150
FORMULA
a(n) = Sum_{k=0..n} A144209(n,k).
a(n) ~ c * n^(n-1), where c = 0.7519160836660874254... . - Vaclav Kotesovec, Sep 10 2014
EXAMPLE
a(4) = 4, because there are 4 simple graphs on 4 labeled nodes, where each maximally connected subgraph consists of a single node or has a unique cycle of length 4:
.1.2. .1-2. .1-2. .1.2.
..... .|.|. ..X.. .|X|.
.3.4. .3-4. .3-4. .3.4.
MAPLE
T:= proc(n, k) option remember; if k=0 then 1 elif k<0 or n<k then 0 elif k=n then 3*binomial(n-1, 3)*n^(n-4) else T(n-1, k) +add(binomial(n-1, j) * T(j+1, j+1) *T(n-1-j, k-j-1), j=3..k-1) fi end: a:= n-> add(T(n, k), k=0..n): seq(a(n), n=0..23);
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k == 0, 1, k<0 || n<k, 0, k == n, 3*Binomial[n-1, 3]*n^(n-4), True, T[n-1, k] + Sum[Binomial[n-1, j]*T[j+1, j+1]*T[n-1-j, k-j-1], {j, 3, k-1}]]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 02 2014, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 14 2008
STATUS
approved