login
A143946
Triangle read by rows: T(n,k) is the number of permutations of [n] for which the sum of the positions of the left-to-right maxima is k (1 <= k <= n(n+1)/2).
6
1, 1, 0, 1, 2, 0, 2, 1, 0, 1, 6, 0, 6, 3, 2, 3, 2, 1, 0, 1, 24, 0, 24, 12, 8, 18, 8, 10, 3, 6, 3, 2, 1, 0, 1, 120, 0, 120, 60, 40, 90, 64, 50, 39, 42, 23, 28, 13, 10, 8, 6, 3, 2, 1, 0, 1, 720, 0, 720, 360, 240, 540, 384, 420, 234, 372, 198, 208, 168, 124, 98, 75, 60, 35, 34, 13, 16, 8, 6, 3
OFFSET
1,5
COMMENTS
Row n contains n*(n+1)/2 = A000217(n) entries.
Sum of entries in row n = n! = A000142(n).
LINKS
I. Kortchemski, Asymptotic behavior of permutation records, arXiv: 0804.0446 [math.CO], 2008-2009.
FORMULA
T(n,1) = T(n,3) = (n-1)! for n>=2.
Sum_{k=1..n*(n+1)/2} k * T(n,k) = n! * n = A001563(n).
Generating polynomial of row n is t(t^2+1)(t^3+2)...(t^n+n-1).
Sum_{k=1..n*(n+1)/2} (n*(n+1)/2-k) * T(n,k) = A001804(n). - Alois P. Heinz, Dec 19 2023
EXAMPLE
T(4,6)=3 because we have 1243, 1342 and 2341 with left-to-right maxima at positions 1,2,3.
Triangle starts:
1;
1, 0, 1;
2, 0, 2, 1, 0, 1;
6, 0, 6, 3, 2, 3, 2, 1, 0, 1;
24, 0, 24, 12, 8, 18, 8, 10, 3, 6, 3, 2, 1, 0, 1;
...
MAPLE
P:=proc(n) options operator, arrow: sort(expand(product(t^j+j-1, j=1..n))) end proc: for n to 7 do seq(coeff(P(n), t, i), i=1..(1/2)*n*(n+1)) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
expand(b(n-1)*(x^n+n-1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=1..7); # Alois P. Heinz, Aug 05 2020
MATHEMATICA
row[n_] := CoefficientList[Product[t^k + k - 1, {k, 1, n}], t] // Rest;
Array[row, 7] // Flatten (* Jean-François Alcover, Nov 28 2017 *)
CROSSREFS
T(n,n) gives A368246.
Sequence in context: A038760 A337938 A245825 * A226860 A244526 A035394
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 21 2008
STATUS
approved