login
A143895
Expansion of (chi(q)^4 / chi(-q))^2 in powers of q where chi() is a Ramanujan theta function.
2
1, 10, 47, 150, 403, 1002, 2316, 5004, 10309, 20456, 39240, 73102, 132779, 235868, 410785, 702630, 1182342, 1960418, 3206675, 5179670, 8270086, 13062994, 20427293, 31644200, 48589970, 73994118, 111802523, 167685238, 249745021, 369499928
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/4) * (eta(q^2)^9 / (eta(q)^5 * eta(q^4)^4))^2 in powers of q.
Euler transform of period 4 sequence [ 10, -8, 10, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143894.
G.f.: (Product_{k>0} (1 + x^k)^5 / (1 + x^(2*k))^4)^2.
a(n) ~ exp(sqrt(2*n)*Pi) / (2^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + 10*x + 47*x^2 + 150*x^3 + 403*x^4 + 1002*x^5 + 2316*x^6 + 5004*x^7 + ...
G.f. = 1/q + 10*q^3 + 47*q^7 + 150*q^11 + 403*q^15 + 1002*q^19 + 2316*q^23 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^9 / (QPochhammer[ x]^5 QPochhammer[ x^4]^4))^2, {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 40; CoefficientList[Series[Product[((1 + x^k)^5 / (1 + x^(2*k))^4)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 / (eta(x + A)^5 * eta(x^4 + A)^4))^2, n))};
CROSSREFS
Cf. A143894.
Sequence in context: A000832 A242462 A253477 * A281767 A323799 A213575
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 04 2008
STATUS
approved