login
A143726
Middle members of beastly cousin prime triples: primes p such that both p+666 and p-666 are prime.
1
733, 773, 823, 857, 877, 947, 997, 1033, 1087, 1123, 1213, 1223, 1283, 1307, 1327, 1423, 1487, 1607, 1993, 2027, 2137, 2153, 2237, 2273, 2287, 2333, 2543, 2663, 2677, 2693, 2797, 2803, 2917, 3187, 3257, 3323, 3407, 3433, 3463, 3467, 3593, 3623, 3847
OFFSET
1,1
LINKS
EXAMPLE
733 - 666 = 67, 733 + 666 = 1399 and 67, 733, 1399 are all prime, so 733 is a term of the sequence. - Felix Fröhlich, May 26 2022
MATHEMATICA
lst={}; b=666; Do[p=Prime[n]; If[PrimeQ[p+b]&&PrimeQ[p-b], AppendTo[lst, p]], {n, 5!+2, 7!}]; lst
Select[Prime[Range[122, 600]], AllTrue[#+{666, -666}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 08 2018 *)
PROG
(PARI) forprime(p=1, 3900, if(ispseudoprime(p+666) && ispseudoprime(p-666), print1(p, ", "))) \\ Felix Fröhlich, May 26 2022
CROSSREFS
Cf. A007529 (p, p+2 or +4, p+6 prime), A023200 (p and p+4 prime), A046132 (p-4 and p prime), A073648 (p-2, p and p+4 prime).
Sequence in context: A044988 A288882 A178093 * A180919 A166607 A346024
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name edited by Felix Fröhlich, May 26 2022
STATUS
approved