OFFSET
1,1
COMMENTS
Row sums are:
{6, 98, 1758, 33614, 731058, 17934068, 499210710}.
FORMULA
t0(n,m)=Binomial[n, m]*Product[k!*(n + k)!/((m + k)!*(n - m + k)!), {k, 1, 7}]. A(n,k)=(3*n - 3*k + 1)A(n - 1, k - 1) + (3*k - 2)A(n - 1, k); t(n,m)=A(n,m)-t0(n,m).
EXAMPLE
{3, 3},
{46, 6, 46},
{347, 532, 532, 347},
{1932, 14505, 740, 14505, 1932},
{9199, 203925, 152405, 152405, 203925, 9199},
{40250, 2087884, 6882086, -86372, 6882086, 2087884, 40250},
{168318, 17968725, 152844537, 78623775, 78623775, 152844537, 17968725, 168318}
MATHEMATICA
f[0, 0] = 1; f[n_, m_] := f[n, m] = Binomial[n, m]*Product[k!*(n + k)!/((m + k)!*(n - m + k)!), {k, 1, 6}]; A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (3*n - 3*k + 1)A[n - 1, k - 1] + (3*k - 2)A[n - 1, k]; a = Table[If[f[n - 1, k - 1] - A[n, k] == 0, {}, -f[n - 1, k - 1] + A[n, k]], {n, 10}, {k, n}]; c = Delete[Union[Table[Flatten[a[[n]]], {n, 1, 10}]], 1]; Flatten[a]
CROSSREFS
KEYWORD
sign,uned
AUTHOR
Roger L. Bagula and Gary W. Adamson, Sep 20 2008
STATUS
approved