login
A142175
T(n,k) = (1/4)*A007318(n,k) - (3/2)*A008292(n+1,k+1) + (9/4)*A060187(n+1,k+1), triangle read by rows (0 <= k <= n).
9
1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014
OFFSET
0,5
COMMENTS
Row n gives the coefficients in the expansion of (1/4)*(1 + x)^n + (9/4)*2^n*(1 - x)^(1 + n)*Phi(x, -n, 1/2) - (3/2)*(1 - x)^(n + 2)*Phi(x, -1 - n, 1), where Phi is the Lerch transcendant.
FORMULA
E.g.f.: (exp((1 + x)*y) - 6*(1 - x)^2*exp(y*(1 - x))/(1 - x*exp(y*(1 - x)))^2 + 9*(1 - x)*exp((1 - x)*y)/(1 - x*exp(2*(1 - x)*y)))/4. - Franck Maminirina Ramaharo, Oct 20 2018
EXAMPLE
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 36, 36, 1;
1, 133, 420, 133, 1;
1, 449, 3334, 3334, 449, 1;
1, 1446, 21939, 49364, 21939, 1446, 1;
1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
... reformatted. - Franck Maminirina Ramaharo, Oct 21 2018
MATHEMATICA
p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
PROG
(Maxima)
A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 20 2018 */
CROSSREFS
Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.
Sequence in context: A220595 A154335 A142467 * A142597 A156137 A152972
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 19 2018
STATUS
approved