Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 11 2024 23:44:58
%S 2,2,2,2,2,3,3,3,4,4,5,5,6,7,8,8,9,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,5,5,
%T 6,7,7,8,9,1,1,1,1,1,1,1,2,2,2,3,3,3,4,4,5,5,6,6,7,8,9,1,1,1,1,1,1,1,
%U 2,2,2
%N Most-significant decimal digit of Fibonacci(5n+3).
%C Leading digit of A134490(n).
%C From _Johannes W. Meijer_, Jul 06 2011: (Start)
%C The leading digit d, 1 <= d <= 9, of A141053 follows Benford’s Law. This law states that the probability for the leading digit is p(d) = log_10(1+1/d), see the examples.
%C We observe that the last digit of A134490(n), i.e. F(5*n+3) mod 10, leads to the Lucas sequence A000032(n) (mod 10), i.e. a repetitive sequence of 12 digits [2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9] with p(0) = p(5) = 0, p(1) = p(3) = p(7) = p(9) = 1/6 and p(2) = p(4) = p(6) = p(8) = 1/12. This does not obey Benford’s Law, which would predict that the last digit would satisfy p(d) = 1/10, see the links. (End)
%H Kevin Brown, <a href="http://www.mathpages.com/home/kmath302/kmath302.htm">Benford's Law</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BenfordsLaw.html">Benford's Law</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Benford's_law">Benford's Law</a>.
%H <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>
%F a(n) = floor(F(5*n+3)/10^(floor(log(F(5*n+3))/log(10)))). - _Johannes W. Meijer_, Jul 06 2011
%e From _Johannes W. Meijer_, Jul 06 2011: (Start)
%e d p(N=2000) p(N=4000) p(N=6000) p(Benford)
%e 1 0.29900 0.29950 0.30033 0.30103
%e 2 0.17700 0.17675 0.17650 0.17609
%e 3 0.12550 0.12525 0.12517 0.12494
%e 4 0.09650 0.09675 0.09700 0.09691
%e 5 0.07950 0.07950 0.07933 0.07918
%e 6 0.06700 0.06675 0.06700 0.06695
%e 7 0.05800 0.05825 0.05800 0.05799
%e 8 0.05150 0.05125 0.05100 0.05115
%e 9 0.04600 0.04600 0.04567 0.04576
%e Total 1.00000 1.00000 1.00000 1.00000 (End)
%p A134490 := proc(n) combinat[fibonacci](5*n+3) ; end proc:
%p A141053 := proc(n) convert(A134490(n),base,10) ; op(-1,%) ; end proc:
%p seq(A141053(n),n=0..70) ; # _R. J. Mathar_, Jul 04 2011
%Y Cf. A000045 (F(n)), A008963 (Initial digit F(n)), A105511-A105519, A003893 (F(n) mod 10), A130893, A186190 (First digit tribonacci), A008952 (Leading digit 2^n), A008905 (Leading digit n!), A045510, A112420 (Leading digit Collatz 3*n+1 starting with 1117065), A007524 (log_10(2)), A104140 (1-log_10(9)). - _Johannes W. Meijer_, Jul 06 2011
%K nonn,base,less
%O 0,1
%A _Paul Curtz_, Aug 01 2008
%E Edited by _Johannes W. Meijer_, Jul 06 2011