login
A141038
Padovan-like sequence; a(0)=2, a(1)=1, a(2)=1, a(n) = a(n-2) + a(n-3).
1
2, 1, 1, 3, 2, 4, 5, 6, 9, 11, 15, 20, 26, 35, 46, 61, 81, 107, 142, 188, 249, 330, 437, 579, 767, 1016, 1346, 1783, 2362, 3129, 4145, 5491, 7274, 9636, 12765, 16910, 22401, 29675, 39311, 52076, 68986, 91387, 121062, 160373, 212449, 281435, 372822, 493884, 654257
OFFSET
0,1
REFERENCES
Martin Gardner, Mathematical Circus, Random House, New York, 1981, p. 165.
FORMULA
From R. J. Mathar, Oct 13 2008: (Start)
G.f.: (1+x)(2-x)/(1-x^2-x^3).
a(n)= 2*A000931(n+5) - A000931(n+4). (End)
MATHEMATICA
Nest[Append[#, #[[-2]] + #[[-3]]] &, {2, 1, 1}, 46] (* or *)
CoefficientList[Series[(1 + x) (2 - x)/(1 - x^2 - x^3), {x, 0, 48}], x] (* Michael De Vlieger, Dec 17 2017 *)
LinearRecurrence[{0, 1, 1}, {2, 1, 1}, 60] (* Harvey P. Dale, Jul 21 2020 *)
PROG
(MATLAB) function y=fib(n)
fz(1)=2; fz(2)=1; fz(3)=1;
for k=4:n
fz(k)=fz(k-2)+fz(k-3);
end
y=fz(n);
(PARI) x='x+O('x^99); Vec((1+x)*(2-x)/(1-x^2-x^3)) \\ Altug Alkan, Dec 17 2017
CROSSREFS
Cf. A000931 (Padovan sequence).
Sequence in context: A117334 A241472 A071872 * A240055 A156309 A205115
KEYWORD
nonn,easy
AUTHOR
Matt Wynne (mattwyn(AT)verizon.net), Jul 30 2008
EXTENSIONS
Better name from T. D. Noe, Aug 06 2008
Offset corrected by R. J. Mathar, Sep 27 2009
STATUS
approved