login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-colorings of the cubical graph.
14

%I #27 Jan 20 2024 14:23:21

%S 0,0,2,114,2652,29660,198030,932862,3440024,10599192,28478970,

%T 68716010,152040372,313269684,608134982,1122341430,1983307440,

%U 3375066032,5556852594,8885943522,13845350540,21077015820,31421193342,45962742254,66085098312,93532729800

%N Number of n-colorings of the cubical graph.

%H Eric M. Schmidt, <a href="/A140986/b140986.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicalGraph.html">Cubical Graph</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).

%F a(n) = n^8-12*n^7+66*n^6-214*n^5+441*n^4-572*n^3+423*n^2-133*n.

%F G.f.: 2*x^2*(1+48*x+849*x^2+4864*x^3+8619*x^4+4848*x^5+931*x^6)/(1-x)^9. - _Colin Barker_, Apr 15 2012

%F a(n) = Sum_{k=1..8} k!*binomial(n,k)*A334159(3,k). - _Andrew Howroyd_, Apr 22 2020

%p a:= n-> n^8 -12*n^7 +66*n^6 -214*n^5 +441*n^4 -572*n^3 +423*n^2 -133*n:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 01 2009

%o (Maxima)

%o A140986(n):=n^8-12*n^7+66*n^6-214*n^5+441*n^4-572*n^3 +423*n^2-133*n$

%o makelist(A140986(n),n,0,30); /* _Martin Ettl_, Nov 03 2012 */

%Y Cf. A296914, A334159.

%K easy,nonn

%O 0,3

%A _Jonathan Vos Post_, Jul 28 2008

%E More terms from _Alois P. Heinz_, Mar 01 2009