login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140751
Triangle read by rows, X^n * [1,0,0,0,...] where X = an infinite tridiagonal matrix with (1,0,1,0,1,...) in the main and subdiagonals and (1,1,1,...) in the subsubdiagonal.
2
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 6, 6, 15, 15, 20, 20, 15, 15, 6, 6, 1, 1, 1, 7, 7, 21, 21, 35, 35, 35, 35, 21, 21, 7, 7, 1
OFFSET
0,7
LINKS
FORMULA
From G. C. Greubel, Oct 23 2023: (Start)
Sum_{k=0..n} T(n, k) = A000079(n).
Sum_{k=0..2*n-1} T(n, k) = A000918(n+1), n >= 1.
Sum_{k=0..2*n} (-1)^k*T(n, k) = 1. (End)
EXAMPLE
First few rows of the triangle are;
1;
1, 1, 1;
1, 1, 2, 2, 1;
1, 1, 3, 3, 3, 3, 1;
1, 1, 4, 4, 6, 6, 4, 4, 1;
1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1;
1, 1, 6, 6, 15, 15, 20, 20, 15, 15, 6, 6, 1;
1, 1, 7, 7, 21, 21, 35, 35, 35, 35, 21, 21, 7, 7, 1;
...
MATHEMATICA
row[n_]:= Append[Table[Binomial[n, k], {k, 0, n-1}, {2}], 1]//Flatten;
Table[row[n], {n, 0, 7}]//Flatten (* Jean-François Alcover, Aug 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # Triangle in centered form.
if abs(k) > n: return 0
if n == k: return 1
even = lambda n: 1 if 2.divides(n) else 0
odd = lambda n: 1 if 2.divides(n+1) else 0
return T(n-1, k-1) + odd(n-k)*T(n-1, k) + even(n-k)*T(n-1, k+1)
for n in (0..7): [T(n, k) for k in (-n..n)] # Peter Luschny, Nov 22 2013
(Magma)
A140751:=func< n, k | k mod 2 eq 0 select Binomial(n, Floor(k/2)) else k mod 2 eq 1 select Binomial(n, Floor((k-1)/2)) else 0 >;
[A140751(n, k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 23 2023
CROSSREFS
Cf. A000079, A000918, A007318 (Pascal's triangle), A140750.
Cf. A000225 (row sums), A001405 (central terms).
Sequence in context: A291120 A025485 A219365 * A259922 A162741 A340145
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved