login
A140403
Expansion of 8*x^4/((1-x)^2*(1-x^3)) + 8*x^5/((1-x)*(1-x^2)*(1-x^5)).
1
0, 0, 0, 0, 8, 24, 32, 56, 72, 96, 128, 160, 192, 232, 272, 320, 368, 424, 472, 536, 600, 664, 736, 808, 880, 968, 1048, 1136, 1224, 1320, 1416, 1520, 1624, 1728, 1840, 1960, 2072, 2200, 2320, 2448, 2584, 2720, 2856, 3000, 3144, 3296, 3448, 3608, 3760, 3928, 4096
OFFSET
0,5
LINKS
Guoce Xin, Constructing all magic squares of order three, Discrete Math., 308 (2008), 3393-3398.
FORMULA
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=8, a(5)=24, a(6)=32, a(7)=56, a(8)=72, a(9)=96, a(n)=a(n-2)+a(n-3)-a(n-7)-a(n-8)+a(n-10). [Harvey P. Dale, Mar 22 2012]
a(n) = 8*A140402(n). - R. J. Mathar, Sep 27 2014
MATHEMATICA
CoefficientList[Series[8x^4/((1-x)^2(1-x^3))+8x^5/((1-x)(1-x^2)(1-x^5)), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 1, 0, 0, 0, -1, -1, 0, 1}, {0, 0, 0, 0, 8, 24, 32, 56, 72, 96}, 60] (* Harvey P. Dale, Mar 22 2012 *)
CROSSREFS
Sequence in context: A128690 A283078 A319528 * A108578 A305241 A044450
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 20 2008
STATUS
approved