login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k!/k# + 1 is prime, where k# is the primorial function (A034386).
7

%I #56 Aug 12 2024 13:08:50

%S 0,1,2,3,4,5,8,14,20,26,34,56,104,153,182,194,217,230,280,281,462,463,

%T 529,1445,2515,3692,6187,6851,13917,17258,48934

%N Numbers k such that k!/k# + 1 is prime, where k# is the primorial function (A034386).

%C 96835 is a term of the sequence, but its rank is not currently known. - _Serge Batalov_, Feb 06 2015

%C If k is a prime and k is a member, then k-1 is also a member, and k!/k# + 1 is the same as (k-1)!/(k-1)# + 1. See A049420. - _Jeppe Stig Nielsen_, Aug 12 2024

%H Chris Caldwell, <a href="https://t5k.org/glossary/page.php?sort=Compositorial">Compositorial</a>

%e 8!/8# + 1 = 40320/210 + 1 = 193, a prime.

%p A140294 := proc(n) local L, p, s, i; L := 1;

%p for p in select(isprime, [$2..iquo(n,2)]) do

%p s := add(i,i=convert(n,base,p)); L := L*p^((n-s)/(p-1)-1) od;

%p `if`(isprime(L+1), n, NULL) end:

%p seq(A140294(i), i=0..104); # _Peter Luschny_, Mar 27 2013

%t Primorial[p_] := Times @@ Prime[Range[PrimePi[p]]]; Select[Range[0,194], PrimeQ[#!/Primorial[#] + 1] &] (* _T. D. Noe_, Mar 27 2013 *)

%o (PARI) is(n)=ispseudoprime(n!/prod(i=1,primepi(n),prime(i))+1) \\ _Charles R Greathouse IV_, Mar 27 2013

%o (PFGW) ABC2 $a!/$a#+1

%o a: from 1 to 3000

%Y Cf. A034386, A140293, A140315, A049420, A049421, A053982.

%K nonn

%O 1,3

%A _Cino Hilliard_, May 25 2008

%E a(17)-a(25) from _Charles R Greathouse IV_, Mar 27 2013

%E a(26)-a(27) from _Giovanni Resta_, Mar 28 2013

%E a(28) from _Charles R Greathouse IV_, Mar 28 2013

%E a(29) from _Giovanni Resta_, Apr 02 2013

%E a(30) from _Roger Karpin_, Nov 29 2014

%E a(31) from _Roger Karpin_, Jun 08 2015