Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 27 2019 10:26:25
%S 5,25,125,3125,53125,453125,4453125,14453125,314453125,2314453125,
%T 22314453125,122314453125,4122314453125,44122314453125,
%U 444122314453125,4444122314453125,54444122314453125,254444122314453125,1254444122314453125,21254444122314453125
%N The least n-digit multiple of 5^n using the decimal digits {1, 2, 3, 4, 5} exclusively.
%H Alois P. Heinz, <a href="/A140288/b140288.txt">Table of n, a(n) for n = 1..1000</a>
%F To obtain the (n+1)-th term, write the n-th term as k * 5^n. Multiply k by a multiple of 2^n to get a multiple of 5. Add the multiplicator of 2^n to the left of the n-th term.
%e a(5) = 53125 = 17 * 5^5.
%o (PARI) lista(nn) = {v = vector(nn); v[1] = 5; for(k = 2, nn, j = 1; while((j*10^(k-1) + v[k-1]) % 5^k > 0, j++); v[k] = j*10^(k-1) + v[k-1]); for(k = 1, nn, print1(v[k], ", "));} \\ _Jinyuan Wang_, Aug 27 2019
%Y Cf. A053312, A035014.
%K nonn,base
%O 1,1
%A Michel Criton (mcriton(AT)wanadoo.fr), May 24 2008
%E More terms from _Alois P. Heinz_, Apr 05 2017