login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140284
A weighted binomial triangle with smooth weighting function: f(n,d) = Floor[1 + d*Sech[d/2 - n]].
0
1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 12, 30, 12, 1, 1, 15, 50, 50, 15, 1, 1, 12, 60, 140, 60, 12, 1, 1, 14, 63, 245, 245, 63, 14, 1, 1, 8, 84, 336, 630, 336, 84, 8, 1, 1, 9, 72, 336, 1008, 1008, 336, 72, 9, 1, 1, 10, 45, 360, 1470, 2772, 1470, 360, 45, 10, 1
OFFSET
1,5
COMMENTS
Row sums are:
{1, 2, 4, 13, 46, 118, 275, 633, 1481, 2844, 6535}.;
Here the interior coefficients are larger than the
pascal triangle: most generalized Pascal triangles yield smaller interior
coefficients.
FORMULA
a(n,d)=If[n == 0 || n == d, 1, f[n, d]* Binomial[d, n]]; f(n,d) = Floor[1 + d*Sech[d/2 - n]].
EXAMPLE
{{1},
{1, 1},
{1, 6, 1},
{1, 9, 9, 1},
{1, 12, 30, 12, 1},
{1, 15, 50, 50, 15,1},
{1, 12, 60, 140, 60, 12, 1},
{1, 14, 63, 245, 245, 63, 14, 1},
{1, 8, 84, 336, 630, 336, 84, 8, 1},
{1, 9, 72, 336, 1008, 1008, 336, 72, 9,1},
{1, 10, 45, 360, 1470, 2772, 1470, 360, 45, 10, 1}}
MATHEMATICA
f[n_, d_] = Floor[1 + d*Sech[d/2 - n]]; a = Table[Table[If[n == 0 || n == d, 1, f[n, d]* Binomial[ d, n]], {n, 0, d}], {d, 0, 10}]; Flatten[a] Table[Apply[Plus, Table[If[n == 1 || n == d, 1, f[n, d]* Binomial[d, n]], {n, 0, d}]], {d, 0, 10}];
CROSSREFS
Sequence in context: A011491 A189089 A132047 * A143087 A144470 A174377
KEYWORD
nonn,uned,tabl
AUTHOR
STATUS
approved