login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A Beatty sequence: a(n) = [n*(1+1/t)], where t = tribonacci constant (A058265); complement of A140099.
7

%I #9 Jul 09 2024 08:41:44

%S 1,3,4,6,7,9,10,12,13,15,16,18,20,21,23,24,26,27,29,30,32,33,35,37,38,

%T 40,41,43,44,46,47,49,50,52,54,55,57,58,60,61,63,64,66,67,69,71,72,74,

%U 75,77,78,80,81,83,84,86,87,89,91,92,94,95,97,98,100,101,103,104,106

%N A Beatty sequence: a(n) = [n*(1+1/t)], where t = tribonacci constant (A058265); complement of A140099.

%H N. J. A. Sloane, <a href="/A140098/b140098.txt">Table of n, a(n) for n = 1..20000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>.

%e Tribonacci constant: t = 1.839286755214161132551852564653286600...

%e 1 + 1/t = 1.54368901269207636157085597180174798652520...

%t Floor[Range[100]*(1 + 1/Root[#^3-#^2-#-1 &, 1])] (* _Paolo Xausa_, Jul 09 2024 *)

%o (PARI) {a(n)=local(t=(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3);floor(n*(1+1/t))}

%Y Cf. A140099, A140100, A058265.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jun 01 2008