login
A140027
Primes of the form 37x^2+4xy+37y^2.
1
37, 193, 457, 613, 877, 1033, 1597, 2017, 2137, 2293, 2377, 2437, 2797, 3217, 3313, 3697, 3733, 4153, 5077, 5233, 5413, 5653, 6073, 6337, 6637, 7057, 7417, 7477, 7753, 8353, 8677, 9157, 9277, 9433, 9613, 10333, 10753, 10837, 10957, 11113
OFFSET
1,1
COMMENTS
Discriminant=-5460. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {37, 193, 253, 457, 613, 697, 877, 1033, 1177, 1513, 1597, 1633, 1957, 2017, 2137, 2293, 2377, 2437, 2797, 2893, 3193, 3217, 3313, 3697, 3733, 3817, 3973, 4153, 4453, 4477, 4873, 5077, 5233, 5293, 5377, 5413} (mod 5460).
MATHEMATICA
Union[QuadPrimes2[37, 4, 37, 10000], QuadPrimes2[37, -4, 37, 10000]] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {37, 193, 253, 457, 613, 697, 877, 1033, 1177, 1513, 1597, 1633, 1957, 2017, 2137, 2293, 2377, 2437, 2797, 2893, 3193, 3217, 3313, 3697, 3733, 3817, 3973, 4153, 4453, 4477, 4873, 5077, 5233, 5293, 5377, 5413} ]; // Vincenzo Librandi, Aug 06 2012
CROSSREFS
Sequence in context: A172080 A142181 A107196 * A109320 A221571 A053872
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved