login
A140025
Primes of the form 30x^2+30xy+53y^2.
1
53, 113, 233, 653, 953, 1733, 2213, 2237, 2297, 2417, 2753, 2837, 3137, 3917, 4013, 4397, 4733, 4937, 5573, 5693, 6113, 6197, 6353, 6917, 7193, 7253, 7673, 7757, 7877, 8297, 8537, 8597, 9377, 9437, 9473, 9857, 10193, 10313, 10973, 11657
OFFSET
1,1
COMMENTS
Discriminant=-5460. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {53, 113, 233, 653, 737, 893, 953, 1037, 1457, 1577, 1733, 1793, 1817, 2213, 2237, 2297, 2417, 2573, 2753, 2837, 2993, 3077, 3137, 3173, 3917, 3977, 4013, 4313, 4397, 4733, 4757, 4853, 4937, 5093, 5177, 5357} (mod 5460).
MATHEMATICA
QuadPrimes2[30, -30, 53, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {53, 113, 233, 653, 737, 893, 953, 1037, 1457, 1577, 1733, 1793, 1817, 2213, 2237, 2297, 2417, 2573, 2753, 2837, 2993, 3077, 3137, 3173, 3917, 3977, 4013, 4313, 4397, 4733, 4757, 4853, 4937, 5093, 5177, 5357} ]; // Vincenzo Librandi, Aug 06 2012
CROSSREFS
Sequence in context: A107155 A139504 A142798 * A104073 A044240 A044621
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved