login
A140014
Primes of the form 2x^2+2xy+683y^2.
2
2, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 2087, 2423, 2543, 2927, 3203, 3347, 3803, 4127, 4643, 5387, 5783, 5987, 6143, 6203, 6287, 6323, 6563, 6827, 6983, 7247, 7547, 7883, 8387, 8663, 8747, 8807, 9587, 10067, 10103
OFFSET
1,1
COMMENTS
Discriminant=-5460. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {2, 323, 527, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 1943, 2087, 2423, 2507, 2543, 2867, 2927, 3047, 3203, 3287, 3347, 3707, 3803, 4103, 4127, 4223, 4607, 4643, 4727, 4883, 5063, 5363, 5387} (mod 5460).
MATHEMATICA
QuadPrimes2[2, -2, 683, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(11000) | p mod 5460 in {2, 323, 527, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 1943, 2087, 2423, 2507, 2543, 2867, 2927, 3047, 3203, 3287, 3347, 3707, 3803, 4103, 4127, 4223, 4607, 4643, 4727, 4883, 5063, 5363, 5387} ]; // Vincenzo Librandi, Aug 05 2012
CROSSREFS
Sequence in context: A285221 A079195 A120123 * A188698 A209364 A106301
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved