login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139850
Primes of the form 11x^2 + 8xy + 11y^2.
3
11, 71, 179, 191, 239, 359, 431, 491, 599, 659, 911, 1019, 1031, 1439, 1451, 1499, 1619, 1871, 2039, 2111, 2339, 2459, 2531, 2591, 2699, 2711, 2879, 3011, 3119, 3299, 3371, 3539, 3719, 3851, 4019, 4139, 4211, 4271, 4391, 4691, 4799, 5051
OFFSET
1,1
COMMENTS
Discriminant = -420. See A139827 for more information.
Also primes of the forms 11x^2 + 6xy + 39y^2 and 11x^2 + 10xy + 50y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {11, 71, 179, 191, 239, 359} (mod 420).
MATHEMATICA
Union[QuadPrimes2[11, 8, 11, 10000], QuadPrimes2[11, -8, 11, 10000]] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 420 in {11, 71, 179, 191, 239, 359}]; // Vincenzo Librandi, Jul 29 2012
(PARI) list(lim)=my(v=List(), s=[11, 71, 179, 191, 239, 359]); forprime(p=11, lim, if(setsearch(s, p%420), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A089720 A333408 A174202 * A233416 A174822 A201790
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved