login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139790
a(n) = (5*2^(n+2) - 3*n*2^n - 2*(-1)^n) / 18.
2
1, 2, 3, 5, 7, 9, 7, -7, -57, -199, -569, -1479, -3641, -8647, -20025, -45511, -101945, -225735, -495161, -1077703, -2330169, -5009863, -10718777, -22835655, -48467513, -102527431, -216239673, -454848967, -954437177, -1998352839, -4175662649, -8709239239
OFFSET
0,2
COMMENTS
Binomial transform of 1,1,0,1,-2,3,-8,13,-30,... (see A113954 and A103196). - R. J. Mathar, Feb 11 2010
FORMULA
a(n+1) - 2*a(n) = -A001045(n).
G.f.: (1 - x - 3*x^2)/((1+x)*(1-2*x)^2).
a(n) = 3*a(n-1) - 4*a(n-3).
MATHEMATICA
LinearRecurrence[{3, 0, -4}, {1, 2, 3}, 40] (* Harvey P. Dale, May 27 2018 *)
PROG
(Magma) [(5*2^(n+2)-3*n*2^n-2*(-1)^n) / 18: n in [0..35]]; // Vincenzo Librandi, Aug 09 2011
CROSSREFS
Sequence in context: A276227 A355269 A274698 * A118784 A193889 A177922
KEYWORD
sign,easy
AUTHOR
Paul Curtz, May 21 2008
EXTENSIONS
Definition replaced with closed formula by R. J. Mathar, Feb 11 2010
STATUS
approved