OFFSET
0,2
COMMENTS
From Karol A. Penson, Oct 05 2009: (Start)
Integral representation as n-th moment of a positive function on a positive semi-axis (solution of the Stieltjes moment problem), in Maple notation:
a(n)=int(x^n*((1/4)*sqrt(2)*(Pi^(3/2)*2^(1/4)*hypergeom([], [1/2, 3/4], -(1/32)*x)*sqrt(x)-2*Pi*hypergeom([], [3/4, 5/4], -(1/32)*x)*GAMMA(3/4)*x^(3/4)+sqrt(Pi)*GAMMA(3/4)^2*2^(1/4)*hypergeom([], [5/4, 3/2],-(1/32)*x)*x)/(Pi^(3/2)*GAMMA(3/4)*x^(5/4))), x=0..infinity), n=0,1... .
This solution may not be unique. (End)
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..100
Eric Weisstein's World of Mathematics, Tournament
FORMULA
PROG
(PARI) a(n)={(4*n)!/(n!*8^n)} \\ Andrew Howroyd, Jan 07 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 25 2008
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 07 2020
STATUS
approved