login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139158
Triangle a(n,k) of the expansion coefficients of the Hermite polynomial 2*H(n/2,x) if n even, of H((n-1)/2,x)+H((n+1)/2,x) if n odd.
1
2, 1, 2, 0, 4, -2, 2, 4, -4, 0, 8, -2, -12, 4, 8, 0, -24, 0, 16, 12, -12, -48, 8, 16, 24, 0, -96, 0, 32, 12, 120, -48, -160, 16, 32, 0, 240, 0, -320, 0, 64, -120, 120, 720, -160, -480, 32, 64, -240, 0, 1440, 0, -960, 0, 128, -120, -1680, 720, 3360, -480, -1344, 64, 128, 0, -3360, 0, 6720, 0, -2688
OFFSET
0,1
COMMENTS
Coefficients are ordered along increasing exponents [x^k], k=0,...,floor((n+1)/2).
Row sums are 2, 3, 4, 4, 4, -2, -8, -24, -40, -28, -16,..
FORMULA
a(2*n,k) = 2* A060821(n,k). a(2*n-1,k) = A060821(n-1,k)+A060821(n,k) .
sum_{k=0..n} a(2*n,k) = 2*A062267(n).
sum_{k=0..n} a(2*n-1,k) = A062267(n) + A062267(n-1).
EXAMPLE
{2}, = 2
{1, 2}, = 1+2x
{0, 4}, = 4x^2
{-2, 2, 4}, = -2+2x+4x^2
{-4, 0, 8}, = -4+8x^2
{-2, -12, 4, 8},
{0, -24, 0, 16},
{12, -12, -48, 8, 16},
{24, 0, -96, 0, 32},
{12, 120, -48, -160, 16, 32},
{0, 240, 0, -320, 0, 64}.
MAPLE
A060821 := proc(n, k) orthopoly[H](n, x) ; coeftayl(%, x=0, k) ; end:
A139158 := proc(n, k) if type(n, 'even') then 2*A060821(n/2, k) ; else A060821((n+1)/2-1, k)+A060821((n+1)/2, k) ; fi; end: seq( seq(A139158(n, k), k=0..(n+1)/2), n=0..15) ;
MATHEMATICA
Clear[p, x] p[x, 0] = 2*HermiteH[0, x]; p[x, 1] = HermiteH[0, x] + HermiteH[1, x]; p[x, 2] = 2*HermiteH[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*HermiteH[Floor[m/2], x], HermiteH[ Floor[m/2], x] + HermiteH[Floor[m/ 2 + 1], x]];
Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]
CROSSREFS
Cf. A060821.
Sequence in context: A023895 A070963 A174064 * A308209 A366403 A212215
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Jun 05 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, Aug 28 2009
STATUS
approved