login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139146
Interpolation one-half polynomials based on Chebyshev T(x.n) polynomial coefficients(A053120 ): even-> 2*T(x,n); odd->T(x,n) + T(x,n+1).
0
2, 1, 1, 0, 2, -1, 1, 2, -2, 0, 4, -1, -3, 2, 4, 0, -6, 0, 8, 1, -3, -8, 4, 8, 2, 0, -16, 0, 16, 1, 5, -8, -20, 8, 16, 0, 10, 0, -40, 0, 32
OFFSET
1,1
COMMENTS
Row sums are all 2.
The rationale behind this interpolation is that Bessel functions have 1/2 values, so what about other orthogonal polynomials?
The integration shows that they are "mostly" orthogonal when three away from the diagonal.
TableForm[Table[Integrate[p[x, m]*p[x, n]/Sqrt[1 - x^2], {x, -1, 1}], {n, 0, 10}, {m, 0, 10}]]
These polynomials would also be related to two-dimensional Chladni-Chebyshev type standing waves as:
Chladni[x,y,n,m]=ChebyshevT[n, x] + ChebyshevT[m, y].
FORMULA
even->p(x.m)= 2*T(x,n); odd->p(x,m)=T(x,n)+T(x,n+1); out_n,m=Coefficients(p(x,m).
EXAMPLE
{2},
{1, 1},
{0, 2},
{-1, 1, 2},
{-2, 0, 4},
{-1, -3, 2, 4},
{0, -6, 0, 8},
{1, -3, -8, 4,8},
{2, 0, -16, 0, 16},
{1, 5, -8, -20, 8, 16},
{0, 10, 0, -40, 0, 32}
MATHEMATICA
Clear[p, x] p[x, 0] = 2*ChebyshevT[0, x]; p[x, 1] = ChebyshevT[0, x] + ChebyshevT[1, x]; p[x, 2] = 2*ChebyshevT[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*ChebyshevT[Floor[m/2], x], ChebyshevT[Floor[m/2], x] + ChebyshevT[Floor[m/2 + 1], x]]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]
CROSSREFS
Cf. A053120.
Sequence in context: A366246 A361205 A355827 * A340489 A277487 A144032
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Jun 05 2008
STATUS
approved