login
A139033
a(1)=1; at n>=2, a(n) = least square > a(n-1) such that sum a(1)+...+a(n) is a prime number.
3
1, 4, 36, 576, 1296, 1764, 2304, 4356, 6084, 15876, 19044, 20736, 26244, 44100, 69696, 76176, 82944, 86436, 112896, 152100, 176400, 213444, 248004, 254016, 260100, 285156, 291600, 324900, 381924, 396900, 412164, 435600, 476100, 492804, 553536, 608400, 705600
OFFSET
1,2
FORMULA
a(n) = A137326(n)^2.
MATHEMATICA
s={1}; su=1; Do[p=su+n^2; If[PrimeQ[p], su=p; AppendTo[s, n^2]], {n, 2, 120000}]; s
CROSSREFS
Cf. A137326, A139034 (corresponding primes).
Sequence in context: A364152 A238844 A073852 * A370753 A001044 A306736
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 07 2008
EXTENSIONS
Edited by Alois P. Heinz, Jan 27 2023
STATUS
approved