login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138389
Binomial primes: positive integers n such that every i not coprime to n and not exceeding n/2 does not divide binomial(n-i-1,i-1).
10
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 23, 24, 25, 29, 31, 33, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199
OFFSET
1,2
COMMENTS
Note that every i not exceeding n/2 for which (n,i)=1 divides binomial(n-i-1,i-1). For n>33, a(n) is either prime or square of a prime or a product of twin primes. For a proof, see link of V. Shevelev.
Numbers n such that A178105(n) = 0. - Michel Marcus, Feb 07 2016
LINKS
V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory, 3, no.1 (2007), 119-139.
MATHEMATICA
Select[Range@ 200, Function[n, NoneTrue[Select[Range@ Floor[n/2], ! CoprimeQ[#, n] &], Divisible[Binomial[n - # - 1, # - 1], #] &]]] (* Michael De Vlieger, Feb 07 2016, Version 10 *)
PROG
(PARI) isok(n) = {my(md = -1); for (d=2, n\2, if (((binomial(n-d-1, d-1) % d) == 0) && (gcd(n, d) > 1), if (md == -1, md = d, md = min(d, md))); ); (md == -1); } \\ Michel Marcus, Feb 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 08 2008
STATUS
approved