login
A137830
Expansion of phi(-x) / f(-x^4)^2 in powers of x where phi(), f() are Ramanujan theta functions.
2
1, -2, 0, 0, 4, -4, 0, 0, 9, -12, 0, 0, 20, -24, 0, 0, 42, -50, 0, 0, 80, -92, 0, 0, 147, -172, 0, 0, 260, -296, 0, 0, 445, -510, 0, 0, 744, -840, 0, 0, 1215, -1372, 0, 0, 1944, -2176, 0, 0, 3059, -3424, 0, 0, 4740, -5268, 0, 0, 7239, -8040, 0, 0, 10920
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * eta(q)^2 / (eta(q^2) * eta(q^4)^2) in powers of q.
Euler transform of period 4 sequence [ -2, -1, -2, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = (4/3)^(1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A137829.
G.f.: ( Product_{k>0} (1 - x^(2*k)) * (1 + x^k)^2 * (1 + x^(2*k))^2 )^(-1).
a(4*n + 2) = a(4*n + 3) = 0.
a(n) = (-1)^n * A137828(n). a(4*n) = A051136(n). a(4*n + 1) = -2 * A137829(n).
EXAMPLE
G.f. = 1 - 2*x + 4*x^4 - 4*x^5 + 9*x^8 - 12*x^9 + 20*x^12 - 24*x^13 + 42*x^16 + ...
G.f. = 1/q - 2*q^2 + 4*q^11 - 4*q^14 + 9*q^23 - 12*q^26 + 20*q^35 - 24*q^38 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] / QPochhammer[ x^4]^2, {x, 0, n}]; (* Michael Somos, Oct 04 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 / eta(x^2 + A) / eta(x^4 + A)^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 12 2008
STATUS
approved