login
A137710
Triangle read by rows: T(n,k) = T(n-1, k-1) - T(n-k, k-1); left border = (1, 2, 4, 8, 16, 32, ...).
4
1, 2, 1, 4, 1, 1, 8, 2, 1, 1, 16, 4, 2, 1, 1, 32, 8, 3, 2, 1, 1, 64, 16, 6, 2, 2, 1, 1, 64, 16, 6, 2, 2, 1, 1, 128, 32, 12, 5, 2, 2, 1, 1, 256, 64, 24, 10, 4, 2, 2, 1, 1, 512, 128, 48, 21, 9, 4, 2, 2, 1, 1, 1024, 256, 96, 42, 19, 18, 4, 2, 2, 1, 1, 2048, 512, 192, 84, 40, 18, 18, 4, 2, 2, 1, 1
OFFSET
1,2
COMMENTS
Row sums = A137711: (1, 3, 6, 12, 24, 47, 92, 183, ...).
Eigensequence of the triangle = even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). Cf. triangle A180339. - Gary W. Adamson, Aug 28 2010
FORMULA
The triangle is generated by two rules: T(n,k) = T(n-1, k-1) - T(n-k, k-1); and left border = 1, 2, 4, 8, 16, ...
EXAMPLE
First few rows of the triangle:
1;
2, 1;
4, 1, 1;
8, 2, 1, 1;
16, 4, 2, 1, 1;
32, 8, 3, 2, 1, 1;
64, 16, 6, 2, 2, 1, 1;
128, 32, 12, 5, 2, 2, 1, 1;
256, 64, 24, 10, 4, 2, 2, 1, 1;
512, 128, 48, 21, 9, 4, 2, 2, 1, 1;
...
CROSSREFS
Cf. A137711.
Cf. A180339. - Gary W. Adamson, Aug 28 2010
Sequence in context: A283826 A088443 A117352 * A068009 A140168 A059119
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 08 2008
STATUS
approved