login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137677
Expansion of f(-x, -x^4) / psi(-x) where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
1
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 4, 0, 0, 4, 4, 0, 0, 5, 6, 0, 0, 7, 7, 0, 0, 9, 10, 0, 0, 11, 11, 0, 0, 14, 16, 0, 0, 18, 18, 0, 0, 22, 24, 0, 0, 27, 28, 0, 0, 34, 36, 0, 0, 41, 42, 0, 0, 50, 54, 0, 0, 61, 62, 0, 0, 73
OFFSET
0,16
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 36, Equ. (4.12). MR0858826 (88b:11063).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^2) * f(-x^5) / ( f(-x^4) * f(-x^2, -x^3) ) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of ( f(-x^11, -x^19) + x^3 * f(-x, -x^29) ) / f(-x^4) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 0, 0, 1, 0, 0, -1, 1, 1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, 0, ...].
a(4*n + 1) = a(4*n + 2) = 0. a(4*n) = A122134(n). a(4*n + 3) = A122130(n).
EXAMPLE
G.f. = 1 + x^3 + x^7 + x^8 + x^11 + x^12 + 2*x^15 + 2*x^16 + 2*x^19 + 2*x^20 + ...
G.f. = q + q^31 + q^71 + q^81 + q^111 + q^121 + 2*q^151 + 2*q^161 + 2*q^191 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^4] / (QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5]), {x, 0, n}]; (* Michael Somos, Oct 04 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n+1) - 1, x^(k^2 + 2*k) / prod(i=1, k, 1 - x^(4*i), 1 + x * O(x^(n - k^2 - 2*k)))), n))};
CROSSREFS
Sequence in context: A357069 A033461 A143432 * A015818 A225869 A039972
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 04 2008
STATUS
approved