login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137637
a(n) = Sum_{k=0..n} C(2k+2,k)*C(2k+2,n-k) ; equals row 2 of square array A137634 ; also equals the convolution of A137635 and the self-convolution of A073157.
5
1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, 3868024, 20785035, 111931154, 603938905, 3264309644, 17671408012, 95800342628, 520022296700, 2826089180652, 15374990077568, 83727902852188, 456370687687082
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = R(x)*G(x)^2, where R(x) = 1/sqrt(1-4*x*(1+x)^2) is the g.f. of A137635 and G(x) = (1-sqrt(1-4*x*(1+x)^2))/(2*x*(1+x)) is the g.f. of A073157.
PROG
(PARI) {a(n)=sum(k=0, n, binomial(2*k+2, k)*binomial(2*k+2, n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G^2, n, x)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2008
STATUS
approved