login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137478
A triangle of recursive Fibonacci Lah numbers: f(n) = Fibonacci(n)*f(n - 1), L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
1
1, 1, 1, 2, 4, 1, 6, 18, 9, 1, 30, 120, 90, 20, 1, 240, 1200, 1200, 400, 40, 1, 3120, 18720, 23400, 10400, 1560, 78, 1, 65520, 458640, 687960, 382200, 76440, 5733, 147, 1, 2227680, 17821440, 31187520, 20791680, 5197920, 519792, 19992, 272, 1
OFFSET
1,4
COMMENTS
Row sums are: {1, 2, 7, 34, 261, 3081, 57279, 1676641, 77766297, 5728225636, 671925730146, ...}.
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page86
FORMULA
With f(n) = Fibonacci(n)*f(n-1) then the triangle is formed by L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)).
With f(n) = Product_{j=1..n} Fibonacci(j) then the triangle is formed by T(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). - G. C. Greubel, May 15 2019
EXAMPLE
Triangle begins as:
1;
1, 1;
2, 4, 1;
6, 18, 9, 1;
30, 120, 90, 20, 1;
240, 1200, 1200, 400, 40, 1;
3120, 18720, 23400, 10400, 1560, 78, 1;
65520, 458640, 687960, 382200, 76440, 5733, 147, 1;
MATHEMATICA
f[n_]:= Product[Fibonacci[j], {j, 1, n}]; Table[Binomial[n-1, k-1]* f[n]/f[k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, May 15 2019 *)
PROG
(PARI)
{f(n) = prod(j=1, n, fibonacci(j))};
{T(n, k) = binomial(n-1, k-1)*(f(n)/f(k))};
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 15 2019
(Magma)
f:= func< n | (&*[Fibonacci(j): j in [1..n]]) >;
[[Binomial(n-1, k-1)*(f(n)/f(k)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 15 2019
(Sage)
def f(n): return product(fibonacci(j) for j in (1..n))
[[binomial(n-1, k-1)*(f(n)/f(k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 15 2019
CROSSREFS
Sequence in context: A204130 A204024 A021009 * A089087 A142146 A143350
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 22 2008
EXTENSIONS
Edited by G. C. Greubel, May 15 2019
STATUS
approved