Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:32
%S 3,8,15,35,39,45,50,65,92,99,122,140,164,167,170,198,237,284,287,297,
%T 339,354,408,435,515,522,552,582,594,650,668,708,725,737,753,830,1010,
%U 1068,1098,1128,1253,1295,1373,1424,1502,1548,1553,1599,1704,1779,1817
%N Positive numbers k such that k^3 - (k+1)^2 and k^3 + (k+1)^2 are both primes.
%H Harvey P. Dale, <a href="/A137475/b137475.txt">Table of n, a(n) for n = 1..1000</a>
%e 3^3 +- 4^2 -> (11, 43) (both primes);
%e 167^3 +- 168^2 = 4657463 +- 28224 -> (4629239, 4685687) (both primes).
%t Select[Range[900],PrimeQ[ #^3-(#+1)^2]&&PrimeQ[ #^3+(#+1)^2]&]
%t bpQ[n_]:=Module[{a=(n+1)^2},AllTrue[n^3+{a,-a},PrimeQ]]; Select[Range[ 2,2000],bpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Oct 17 2019 *)
%o (Magma) [n: n in [2..500] | IsPrime(n^3-(n+1)^2)and IsPrime(n^3 +(n+1)^2)] // _Vincenzo Librandi_, Nov 24 2010
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 21 2008
%E More terms from _Vincenzo Librandi_, Mar 26 2010