login
A137463
Prime numbers p such that p^3 - p + 1 and p^3 + p - 1 are both primes.
0
7, 139, 631, 739, 769, 991, 1201, 1231, 2677, 3499, 3931, 4261, 4441, 4861, 6247, 7411, 7699, 8377, 9391, 10711, 10837, 14389, 15139, 15679, 16057, 16561, 18541, 20479, 22861, 28111, 28837, 29917, 30169, 30367, 32089, 33589, 35311, 35677
OFFSET
1,1
EXAMPLE
7^3 +- 6 -> (337, 349) (both primes),
139^3 +- 138 -> (2685481, 2685757) (both primes).
MAPLE
a:=proc (n) if isprime(n)=true and isprime(n^3+n-1)=true and isprime(n^3-n+1) =true then n else end if end proc: seq(a(n), n=1..30000); # Emeric Deutsch, Apr 29 2008
MATHEMATICA
Select[Prime[Range[900]], PrimeQ[ #^3-(#-1)]&&PrimeQ[ #^3+(#-1)]&]
PROG
(Magma) [ n: n in [0..40000] | IsPrime(n) and IsPrime(n^3-(n-1)) and IsPrime(n^3 +(n-1)) ]; // Vincenzo Librandi, Nov 24 2010
CROSSREFS
Sequence in context: A375009 A142295 A056254 * A274525 A221375 A351334
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Apr 29 2008
STATUS
approved