login
A137244
a(n) = lcm_{k=0..n} (k! + 1).
1
2, 2, 6, 42, 1050, 127050, 13086150, 65967282150, 2659866783570150, 13594579130827036650, 4484729304047661947505150, 179016047168539016473835519025150, 85748973198421705721932588223712809265150, 533960639770963461900374948788827304744234574385150
OFFSET
0,1
COMMENTS
I came upon this sequence in an attempt to solve an open Erdős problem: Show that Sum_{k>=0} 1/(k!+1) is rational/irrational/transcendental.
LINKS
FORMULA
a(n) = lcm_{k=0..n} (k! + 1).
MATHEMATICA
With[{t=Range[0, 20]!+1}, Table[LCM@@Take[t, n], {n, Length[t]}]] (* Harvey P. Dale, Dec 21 2015 *)
PROG
(PARI) a(n) = {lc = 1; for (k=0, n, lc = lcm(lc, k!+1); ); return (lc); } \\ Michel Marcus, Jul 25 2013
CROSSREFS
Sequence in context: A002027 A290957 A032117 * A284707 A174589 A326942
KEYWORD
easy,nonn
AUTHOR
Karl Levy, Mar 09 2008
EXTENSIONS
More terms from Harvey P. Dale, Dec 21 2015
STATUS
approved