login
A136726
G.f.: A(x) = Sum_{n>=0} log( Sum_{k>=0} fibonacci(k+1)^n*x^k )^n / n!.
0
1, 1, 2, 5, 17, 73, 407, 2907, 26773, 317954, 4886310, 97485657, 2534891399, 86295825506, 3863685633735, 228686666560004, 17979843031304262, 1888025173840826426, 266025611085446537560, 50572458313046091569640
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2x^2 + 5x^3 + 17x^4 + 73x^5 + 407x^6 + 2907x^7 +...
A(x) = Sum_{n>=0} log(1 + x + 2^n*x^2 + 3^n*x^3 + 5^n*x^4 +...)^n / n!;
this sum yields a series in x with integer coefficients.
PROG
(PARI) {a(n)=polcoeff(sum(i=0, n, log(sum(k=0, n, fibonacci(k+1)^i*x^k)+x*O(x^n))^i/i!), n)}
CROSSREFS
Cf. A136553.
Sequence in context: A260337 A217944 A007868 * A112831 A081046 A000774
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2008
STATUS
approved