login
A136673
Triangle of coefficients from a polynomial recursion for Galois field GF(2^n) polynomials: p(x,n)=(x+1)*p(x,n-1)-x*p(x,n-2); or f(x,n)=x^n+x+1;.
0
2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,1
COMMENTS
Row sums are:
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}
The result is very dependent on the two initial polynomials.
REFERENCES
Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, Appendix I
FORMULA
p(x,0)=2+x;p(x,1)=1+2*x; p(x,n)=(x+1)*p(x,n-1)-x*p(x,n-2); or f(x,n)=x^n+x+1;
EXAMPLE
{2, 1},
{1, 2},
{1, 1, 1},
{1, 1, 0, 1},
{1, 1, 0, 0, 1},
{1, 1, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 0, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}
MATHEMATICA
p[x, 0] = 2 + x; p[x, 1] = 1 + 2*x; p[x_, n_] := p[x, n] = (x + 1)*p[x, n - 1] - x*p[x, n - 2]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}] Flatten[a]
CROSSREFS
Sequence in context: A067461 A321765 A328310 * A283149 A097588 A183017
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, Apr 05 2008
STATUS
approved