login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 1 of triangle A136225; also equals column 0 of triangle A136230.
2

%I #2 Mar 30 2012 18:37:08

%S 1,4,26,232,2657,37405,627435,12248365,273211787,6862775083,

%T 191840407156,5909873159107,199002812894375,7273866200397039,

%U 286882936292798852,12145886485652450131,549504341899436759416

%N Column 1 of triangle A136225; also equals column 0 of triangle A136230.

%C Equals column 1 of P^2 (A136225) and equals column 0 of V^2, where P = A136220 and V = A136230 are triangular matrices such that column k of V = column 0 of P^(3k+2) and column j of P^2 = column 0 of V^(j+1).

%o (PARI) /* Generate using matrix product recurrences of triangle P=A136220: */ {a(n)=local(P=Mat([1,0;1,1]),U,PShR);if(n>0,for(i=0,n+1, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+2,2]}

%Y Cf. A136226, A136225 (P^2), A136220 (P), A136230 (V); A136217.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 28 2008