Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Sep 26 2024 02:56:18
%S 35,143,323,575,899,1295,1763,2303,2915,3599,4355,5183,6083,7055,8099,
%T 9215,10403,11663,12995,14399,15875,17423,19043,20735,22499,24335,
%U 26243,28223,30275,32399,34595,36863,39203,41615,44099,46655,49283,51983
%N a(n) = 36n^2 - 1.
%C The least common multiple of 6*n+1 and 6*n-1. - _Colin Barker_, Feb 11 2017
%H Vincenzo Librandi, <a href="/A136017/b136017.txt">Table of n, a(n) for n = 1..1000</a>
%H X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Pi/piSeries.html">Collection of series for Pi</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellEquation.html">Pell Equation</a>
%H Edward Everett Withford, <a href="http://name.umdl.umich.edu/abv2773.0001.001">Pell Equation</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F O.g.f.: x*(-35-38*x+x^2)/(-1+x)^3 = 1-35/(-1+x)-108/(-1+x)^2-72/(-1+x)^3. - _R. J. Mathar_, Dec 12 2007
%F a(n) = A061037(12n+10)=(6n-1)*(6n+1). - _Paul Curtz_, Sep 25 2008
%F Sum_{k>=1} (-1)^(k+1)/a(k) = (Pi-3)/6. - _Jaume Oliver Lafont_, Oct 20 2009
%F E.g.f.: 1 + (36 x^2 + 26 x - 1) exp(x). - _Robert Israel_, Jun 09 2016
%F Product_{n >= 1} A016910(n) / a(n) = Pi / 3. - _Fred Daniel Kline_, Jun 09 2016
%F Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/12. - _Amiram Eldar_, Jun 27 2020
%t Table[36n^2 - 1, {n, 1, 100}]
%o (PARI) a(n)=36*n^2-1 \\ _Jaume Oliver Lafont_, Oct 20 2009
%o (Magma)[36*n^2 - 1: n in [1..50]]; // _Vincenzo Librandi_, Jul 09 2012
%Y Cf. A088878, A023208, A136016, A061037, A016910.
%K nonn,easy
%O 1,1
%A _Artur Jasinski_, Dec 10 2007