login
A135505
a(0) = 1; a(n) = [product_(i = 1..n) prime(i)^i] - 1, where prime(i) is i-th prime.
1
1, 1, 17, 2249, 5402249, 870037764749, 4199506113235182749, 1723219765760312626547490749, 29266411525287522788837599332989370749, 52713275010243038997421106186697438702252144407249, 22176856087751973465466098269669474342964368337745368642450857249
OFFSET
0,3
LINKS
C. K. Caldwell and Y. Gallot, On the primality of n!-1 and 2*3*..*p -1, Math. Comp., Volume 71, Number 237, Pages 441-448.
Leo Corry, Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850-1960) and beyond, Archive for History of Exact Sciences, Vol. 62, No. 4 (July 2008), pp. 393-455.
Roland Queme, Some applications of Kummer and Stickelberger relations, arXiv:math/0601136 [math.NT], 2006.
FORMULA
a(n) = A076954(n)-1, n>0. - R. J. Mathar, Nov 01 2009
PROG
(PARI)
a(n) = { if (n <= 0, return(1)); prod(i = 1, n, prime(i)^i) - 1; }
vector(11, i, a(i-1)) \\ Gheorghe Coserea, Aug 24 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Feb 19 2008
EXTENSIONS
Converted references to links - R. J. Mathar, Oct 30 2009
STATUS
approved