login
A135299
Pascal's triangle, but the last element of the row is the sum of all the previous terms.
1
1, 1, 2, 1, 3, 8, 1, 4, 11, 32, 1, 5, 15, 43, 128, 1, 6, 20, 58, 171, 512, 1, 7, 26, 78, 229, 683, 2048, 1, 8, 33, 104, 307, 912, 2731, 8192, 1, 9, 41, 137, 411, 1219, 3643, 10923, 32768, 1, 10, 50, 178, 548, 1630, 4862, 14566, 43691, 131072
OFFSET
0,3
FORMULA
T(0,0) = 1;
T(n,0) = 1;
T(n,k) = T(n-1, k-1) + T(n-1, k) if k < n;
T(n,n) = (Sum_{j=0..n-1} Sum_{i=0..j} T(j,i)) + Sum_{i=0..n-1} T(n,i) [i.e., sum of all earlier terms of the triangle].
T(n,n) = (4^n)/2 for n > 0;
T(n,n) = 2*Sum_{i=0..n-1} T(n,i).
EXAMPLE
T(2,1) = T(1,0) + T(1,1) = 1 + 2 = 3;
T(2,2) = T(0,0) + T(1,0) + T(1,1) + T(2,0) + T(2,1) = 1 + 1 + 2 + 1 + 3 = 8.
From G. C. Greubel, Oct 09 2016: (Start)
The triangle is:
1;
1, 2;
1, 3, 8;
1, 4, 11, 32;
1, 5, 15, 43, 128;
1, 6, 20, 58, 171, 512;
... (End)
MATHEMATICA
T[0, 0] := 1; T[n_, 0] := 1; T[n_, k_] := T[n - 1, k] + T[n - 1, k - 1]; T[n_, n_] := 2^(2*n - 1); Table[T[n, k], {n, 0, 5}, {k, 0, n}] (* G. C. Greubel, Oct 09 2016 *)
CROSSREFS
Sequence in context: A019224 A298096 A053190 * A092081 A203997 A057740
KEYWORD
nonn,tabl
AUTHOR
Jose Ramon Real, Dec 04 2007
STATUS
approved