login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of staircase twin primes according to the rule: top + bottom - next top.
0

%I #5 Sep 10 2016 15:56:06

%S 3,1,7,7,19,25,49,43,97,79,127,121,169,187,169,217,211,259,253,277,

%T 277,409,403,403,475,541,583,595,625,511,799,817,799,835,745,1009,

%U 1015,1039,1033,1033,1075,1183,1267,1279,1285,1213,1405,1423,1477,1369,1597,1573

%N Sum of staircase twin primes according to the rule: top + bottom - next top.

%C The case for bottom - top + next top produces A006512(n+1), the upper twin primes > 5.

%F We list the twin primes in staircase fashion as in A135283. Then a(n) = tl(n) + tu(n) + (-tl(n+1)).

%F a(n) = A054735(n)-A001359(n+1). - _R. J. Mathar_, Sep 10 2016

%o (PARI) g(n) = for(x=1,n,y=twinu(x) + twinl(x) - twinl(x+1);print1(y",")) twinl(n) = / *The n-th lower twin prime. */ { local(c,x); c=0; x=1; while(c<n, if(ispseudoprime(prime(x)+2),c++); x++; ); return(prime(x-1)) } twinu(n) = /* The n-th upper twin prime. */ { local(c,x); c=0; x=1; while(c<n, if(isprime(prime(x)+2),c++); x++; ); return(prime(x)) }

%K nonn

%O 1,1

%A _Cino Hilliard_, Dec 03 2007