login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135284
Sum of staircase twin primes according to the rule: top + bottom - next top.
0
3, 1, 7, 7, 19, 25, 49, 43, 97, 79, 127, 121, 169, 187, 169, 217, 211, 259, 253, 277, 277, 409, 403, 403, 475, 541, 583, 595, 625, 511, 799, 817, 799, 835, 745, 1009, 1015, 1039, 1033, 1033, 1075, 1183, 1267, 1279, 1285, 1213, 1405, 1423, 1477, 1369, 1597, 1573
OFFSET
1,1
COMMENTS
The case for bottom - top + next top produces A006512(n+1), the upper twin primes > 5.
FORMULA
We list the twin primes in staircase fashion as in A135283. Then a(n) = tl(n) + tu(n) + (-tl(n+1)).
a(n) = A054735(n)-A001359(n+1). - R. J. Mathar, Sep 10 2016
PROG
(PARI) g(n) = for(x=1, n, y=twinu(x) + twinl(x) - twinl(x+1); print1(y", ")) twinl(n) = / *The n-th lower twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(ispseudoprime(prime(x)+2), c++); x++; ); return(prime(x-1)) } twinu(n) = /* The n-th upper twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x)) }
CROSSREFS
Sequence in context: A319298 A101748 A058606 * A016647 A091039 A217594
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 03 2007
STATUS
approved