login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135283
Sum of staircase twin primes according to the rule: top + bottom + next top.
3
13, 23, 41, 65, 101, 143, 191, 245, 311, 353, 425, 479, 551, 581, 623, 695, 749, 821, 875, 971, 1115, 1271, 1325, 1445, 1613, 1739, 1817, 1877, 1943, 2129, 2441, 2471, 2513, 2597, 2783, 3071, 3113, 3161, 3215, 3335, 3533, 3737, 3845, 3881, 3923, 4067
OFFSET
1,1
COMMENTS
We list the twin primes in staircase fashion as follows.
3
5_5
__7_11
____13_17
_______19_29
__________31_41
_____________.._..
________________tu(n)_tl(n)
______________________tu(n+1)
...
where tl(n) = n-th lower twin prime, tu(n) = n-th upper twin prime. Then a(n) = tl(n) + tu(n) + tl(n+1).
FORMULA
a(n) = A054735(n)+A001359(n+1). - R. J. Mathar, Sep 10 2016
PROG
(PARI) g(n) = for(x=1, n, y=twinu(x)+twinl(x) + twinl(x+1); print1(y", ")) twinl(n) = / *The n-th lower twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(ispseudoprime(prime(x)+2), c++); x++; ); return(prime(x-1)) } twinu(n) = /* The n-th upper twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x)) }
CROSSREFS
Sequence in context: A164407 A259216 A339867 * A225519 A213655 A119488
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 02 2007
STATUS
approved