login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135281
A triangular sequence based on a two sequence lower triangular matrix. a(n)=(-1)^n*(n-1)!; b[n]=(n-1)!; M(i,j)={{a(i),b(j)},{b(j),a(i+1)}}; a0(i,j)=Det[M(i,j)]; This method gives an tridiagonal matrix effect to a lower triangular matrix base.
0
1, -1, -2, 2, 5, 3, -18, -39, -23, -4, 1152, 2064, 872, 119, 5, -720000, -1122000, -331400, -26755, -719, -6, 5598720000, 7985952000, 1768046400, 84475980, 1128024, 5039, 7, -658683809280000, -887001391584000, -157639245422400, -4880494582740, -33169857336, -63204617, -40319, -8
OFFSET
1,3
COMMENTS
(n+2) factor is added to get the Integer result instead of a rational result in the polynomials.
FORMULA
a(n)=(-1)^n*(n-1)!; b[n]=(n-1)!; m(i,j)=If[i > j, (-1)^(i + j)*((a[j + 1]*a[j + 2] - b[i + 1]^2)/(n + 1)!)/(j!*(i - j)!), 0] t(n,m)=(n+2)*Coefficients of Characteristic polynomials of inverse of m(i,j)
EXAMPLE
{1},
{-1, -2},
{2, 5, 3},
{-18, -39, -23, -4},
{1152, 2064, 872,119, 5},
{-720000, -1122000, -331400, -26755, -719, -6},
{5598720000, 7985952000, 1768046400, 84475980,1128024, 5039, 7},
CROSSREFS
Sequence in context: A322786 A184243 A356891 * A068465 A217876 A209771
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula, Feb 15 2008
STATUS
approved