login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135166
a(n) = 7^n + 5^n - 3^n + 2^n.
1
2, 11, 69, 449, 2961, 19721, 132609, 899609, 6149121, 42287561, 292182849, 2025979769, 14084900481, 98108127401, 684321821889, 4778064771929, 33385475479041, 233393324431241, 1632227908017729, 11417967509964089, 79887630243516801, 559022690783231081, 3912205202997138369
OFFSET
0,1
COMMENTS
Constants are the prime numbers in decreasing order.
FORMULA
a(n) = 7^n + 5^n - 3^n + 2^n.
a(0)=2, a(1)=11, a(2)=69, a(3)=449, a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4). - Harvey P. Dale, Feb 01 2013
From G. C. Greubel, Sep 30 2016: (Start)
G.f.: (2 - 23*x + 84*x^2 - 107*x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).
E.g.f.: exp(7*x) + exp(5*x) - exp(3*x) + exp(2*x). (End)
EXAMPLE
a(4) = 2961 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and we can write 2401 + 625 - 81 + 16 = 2961.
MATHEMATICA
Table[7^n+5^n-3^n+2^n, {n, 0, 30}] (* or *) LinearRecurrence[ {17, -101, 247, -210}, {2, 11, 69, 449}, 30] (* Harvey P. Dale, Feb 01 2013 *)
PROG
(Magma)[7^n+5^n-3^n+2^n: n in [0..50]] // Vincenzo Librandi, Dec 14 2010
(PARI) a(n)=7^n+5^n-3^n+2^n \\ Charles R Greathouse IV, Sep 30 2016
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 21 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved