Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Mar 02 2018 17:36:35
%S 1,1,3,4,10,14,32,46,99,145,299,444,887,1331,2595,3926,7508,11434,
%T 21526,32960,61251,94211,173173,267384,486925,754309,1362627,2116936,
%U 3797374,5914310,10543724,16458034,29180067,45638101,80521055,126159156,221610563,347769719,608468451,956238170,1667040776
%N Row sums of triangle A134511.
%H Robert Israel, <a href="/A134512/b134512.txt">Table of n, a(n) for n = 0..1999</a>
%F Empirical g.f.: (1-x^2)^2/((1+x-x^2)*(1-x-x^2)^2). - _Robert Israel_, Mar 02 2018
%e a(4) = 10 = sum of row 4 terms of triangle A134511: (5 + 0 + 4 + 0 + 1).
%p N:= 100: # for the first N terms
%p T128174:= Matrix(N, N, (i, j) -> `if`(j<=i, (i-j+1) mod 2, 0)):
%p T049310:= Matrix(N, N):
%p for i from 1 to N do
%p P:= orthopoly[U](i-1, x/2);
%p for j from 1 to i do
%p T049310[i, j]:= abs(coeff(P, x, j-1))
%p od
%p od:
%p convert(T049310 . (T128174 . Vector(N,1)),list); # _Robert Israel_, Mar 02 2018
%Y Cf. A134511.
%K nonn
%O 0,3
%A _Gary W. Adamson_, Oct 28 2007
%E More terms from _Robert Israel_, Mar 02 2018