OFFSET
0,3
COMMENTS
FORMULA
G.f.=G(t,z) satisfies G(t,z)=1/[1-z-z^2-(tz^2)G(t,tz)]. Rec. rel. for the row generating polynomials P[n]=P[n](t): P[n]=P[n-1]+P[n-2]+Sum(t^(j+1)P[j]P[n-2-j], j=0..n-2) for n>=2; P[0]=P[1]=1.
EXAMPLE
T(4,2)=3 because we have hUhD, UhDh and UDUD.
Triangle starts:
1;
1;
2,1;
3,2,1;
5,5,3,2,1;
8,10,8,6,5,2,1;
MAPLE
P[0]:=1: P[1]:=1: for n from 2 to 9 do P[n]:=sort(expand(P[n-1]+P[n-2]+sum(P[j]*P[n-2-j]*t^(j+1), j=0..n-2))) end do: for n from 0 to 9 do seq(coeff(P[n], t, j), j=0..floor((1/4)*n^2)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 25 2007
STATUS
approved